Multichannel sleep spindle detection using sparse low-rank optimization
نویسندگان
چکیده
منابع مشابه
Generalized Sparse and Low-Rank Optimization for Ultra-Dense Networks
Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and meet the diverse performance requirements of 5G networks. With abundant access points, each with communication, computation and storage resources, UDN brings unprecedented benefits, including significant improvement in network spectral efficiency and energy efficiency, greatly reduced latency to enable n...
متن کاملBeyond Low Rank + Sparse: A Multi-scale Low Rank Decomposition
We present a multi-scale version of low rank matrix decomposition. Our motivation comes from imaging applications, in which image sequences are correlated locally on several scales in space and time rather than globally. We model our data matrix as a sum of matrices, where each matrix has increasing scales of locally low-rank matrices. Using this multi-scale modeling, we can capture different s...
متن کاملRepairing Sparse Low-Rank Texture
In this paper, we show how to harness both lowrank and sparse structures in regular or near regular textures for image completion. Our method leverages the new convex optimization for low-rank and sparse signal recovery and can automatically correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. Through extensive simulat...
متن کاملSparse and Low Rank Recovery
Compressive sensing (sparse recovery) is a new area in mathematical image and signal processing that predicts that sparse signals can be recovered from what was previously believed to be highly incomplete measurement [3, 5, 7, 12]. Recently, the ideas of this field have been extended to the recovery of low rank matrices from undersampled information [6, 8]; most notably to the matrix completion...
متن کاملFinding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization
This paper is concerned with the problem of finding a low-rank solution of an arbitrary sparse linear matrix inequality (LMI). To this end, we map the sparsity of the LMI problem into a graph. We develop a theory relating the rank of the minimum-rank solution of the LMI problem to the sparsity of its underlying graph. Furthermore, we propose three graph-theoretic convex programs to obtain a low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neuroscience Methods
سال: 2017
ISSN: 0165-0270
DOI: 10.1016/j.jneumeth.2017.06.004